🎙️ #speech #AI #NLP #recsys
🐶 Apollo’s human | 🛶 Rowing to 1M meters
🌐 https://mariateleki.github.io/
⚽️ Xiangjue Dong (1st author), Cong Wang, Millenium Bismay, and James Caverlee
#NLP #NLPResearch #LLMs #GenAI #AI
⚽️ Xiangjue Dong (1st author), Cong Wang, Millenium Bismay, and James Caverlee
#NLP #NLPResearch #LLMs #GenAI #AI
📄 www.isca-archive.org/interspeech_...
📄 www.isca-archive.org/interspeech_...
✅ Robust to disfluencies
✅ Reliable in noisy, real-world conditions
✅ Generalizable across contexts
If conversational AI is going to truly work for everyone, it must be built for human speech as it is.
✅ Robust to disfluencies
✅ Reliable in noisy, real-world conditions
✅ Generalizable across contexts
If conversational AI is going to truly work for everyone, it must be built for human speech as it is.
📄 Read more: www.isca-archive.org/interspeech_...
#SpeechProcessing #ConversationalAI #VoiceAI #Disfluency #SpokenLanguage
#INTERSPEECH
📄 Read more: www.isca-archive.org/interspeech_...
#SpeechProcessing #ConversationalAI #VoiceAI #Disfluency #SpokenLanguage
#INTERSPEECH
👉 WhisperX better captures interjections like “uh” and “um”
👉 Google ASR better captures edited nodes (e.g., “let’s go to Target--Walmart”)
🌟 The type of disfluency matters when choosing an ASR system
👉 WhisperX better captures interjections like “uh” and “um”
👉 Google ASR better captures edited nodes (e.g., “let’s go to Target--Walmart”)
🌟 The type of disfluency matters when choosing an ASR system
📄 Paper: mariateleki.github.io/pdf/A_Survey... | 💻 GitHub: github.com/mariateleki/...
#StoryGeneration #GenerativeAI #NLProc
📄 Paper: mariateleki.github.io/pdf/A_Survey... | 💻 GitHub: github.com/mariateleki/...
#StoryGeneration #GenerativeAI #NLProc
📄 Paper: arxiv.org/pdf/2509.20321
💻 Code: github.com/mariateleki/...
📄 Paper: arxiv.org/pdf/2509.20321
💻 Code: github.com/mariateleki/...
✅ Controlled evaluation on gold transcripts (no ASR noise) sets an upper bound
📊 Systematic comparison across open & proprietary LLMs
🧪 First taxonomy of LLM error modes
✅ Controlled evaluation on gold transcripts (no ASR noise) sets an upper bound
📊 Systematic comparison across open & proprietary LLMs
🧪 First taxonomy of LLM error modes
📄 Paper: arxiv.org/abs/2509.20319
💻 Code: github.com/mariateleki/...
📄 Paper: arxiv.org/abs/2509.20319
💻 Code: github.com/mariateleki/...