CRAN Updates
cranupdates.bsky.social
CRAN Updates
@cranupdates.bsky.social
Unofficial CRAN updates bot maintained by @chriskenny.bsky.social using R package bskyr https://christophertkenny.com/bskyr/
Updates on CRAN: ETLUtils (1.6), ggallin (0.1.2), hmde (1.3), ICSsmoothing (1.2.10), image.CornerDetectionF9 (0.1.1), image.libfacedetection (0.1.1), image.Otsu (0.1.1), LAGOSNE (2.0.4), text.alignment (0.1.5)
November 27, 2025 at 2:43 AM
Updates on CRAN: BioTrajectory (1.1.0), BTM (0.3.8), charlesschwabapi (1.0.5), gofigR (1.1.3), semtree (0.9.23), SNPannotator (1.4.3)
November 26, 2025 at 9:19 PM
Updates on CRAN: BCEA (2.4.83), CSHShydRology (1.4.4), ecoval (1.2.10), fastbioclim (0.3.0), flowchart (1.0.0), GeneScoreR (0.2.0), GenSA (1.1.15), ggtern (4.0.0), GPpenalty (1.0.1), latentcor (2.0.2), mlr3inferr (0.2.1), PFIM (7.0.1), rclsp (0.2.0), saeHB (0.2.3), SCORPIUS (1.0.10)
November 26, 2025 at 5:20 PM
Updates on CRAN: appeears (1.2), bbotk (1.8.1), dynwrap (1.2.5), fmtr (1.7.0), geojsonsf (2.0.5), GGIRread (1.0.7), guideR (0.7.0), organik (1.0.1), PublicationBiasBenchmark (0.1.2), REDCapDM (1.0.0), udpipe (0.8.14)
November 26, 2025 at 1:36 PM
Removed from CRAN: FORTLS (1.6.1), lazy (1.2-18), sumR (0.4.15)
November 26, 2025 at 9:25 AM
Updates on CRAN: RALSA (1.6.0), randomForestSRC (3.4.5), sdmTMB (0.8.0), sommer (4.4.4), synMicrodata (2.1.3), terminalgraphics (0.2.1), tidyCpp (0.0.8), udpipe (0.8.13), xegaPopulation (1.0.0.11)
November 26, 2025 at 9:25 AM
Updates on CRAN: completejourney (1.1.1), deeptime (2.3.1), DominoDataR (0.3.1), galamm (0.3.0), jellyfisher (1.1.1), liver (1.26), MCMCvis (0.16.5), MMAD (2.0), nomisdata (0.1.1), OrgHeatmap (0.3.1)
November 26, 2025 at 9:25 AM
Updates on CRAN: aramappings (0.1.2), boutliers (2.1-2), phylolm.hp (0.0-4)
November 26, 2025 at 5:21 AM
Updates on CRAN: ABCDscores (6.1.0), edar (0.0.6), LikertMakeR (1.3.0), neotoma2 (1.0.9), plinkQC (1.0.0)
November 26, 2025 at 2:46 AM
New on CRAN: specleanr (1.0.0). View at https://CRAN.R-project.org/package=specleanr
specleanr: Detecting Environmental Outliers in Data Analysis Pipelines
A framework used to detect and handle outliers during data analysis workflows. Outlier detection is a statistical concept with applications in data analysis workflows, highlighting records that are suspiciously high or low. Outlier detection in distribution models was initiated by Chapman (1991) (available at &lt;<a href="https://www.researchgate.net/publication/332537800_Quality_control_and_validation_of_point-sourced_environmental_resource_data" target="_top">https://www.researchgate.net/publication/332537800_Quality_control_and_validation_of_point-sourced_environmental_resource_data</a>&gt;), who developed the reverse jackknifing method. The concept was further developed and incorporated into different R packages, including 'flexsdm' (Velazco et al., 2022, &lt;<a href="https://doi.org/10.1111%2F2041-210X.13874" target="_top">doi:10.1111/2041-210X.13874</a>&gt;) and 'biogeo' (Robertson et al., 2016 &lt;<a href="https://doi.org/10.1111%2Fecog.02118" target="_top">doi:10.1111/ecog.02118</a>&gt;). We compiled various outlier detection methods obtained from the literature, including those elaborated in Dastjerdy et al. (2023) &lt;<a href="https://doi.org/10.3390%2Fgeotechnics3020022" target="_top">doi:10.3390/geotechnics3020022</a>&gt; and Liu et al. (2008) &lt;<a href="https://doi.org/10.1109%2FICDM.2008.17" target="_top">doi:10.1109/ICDM.2008.17</a>&gt;. In this package, we introduced the ensembling aspect, where multiple outlier detection methods are used to flag the record as either an absolute outlier. The concept can also be applied in general data analysis, as well as during the development of species distribution models.
CRAN.R-project.org
November 25, 2025 at 9:21 PM