Automatic Differentiation, Explainable AI and #JuliaLang.
Open source person: adrianhill.de/projects
Unfortunately, this convolution is computationally infeasible in high dimensions. Naive Monte Carlo approximation results in the popular SmoothGrad method.
Unfortunately, this convolution is computationally infeasible in high dimensions. Naive Monte Carlo approximation results in the popular SmoothGrad method.
Unfortunately, gradients of deep NN resemble white noise, rendering them uninformative:
Unfortunately, gradients of deep NN resemble white noise, rendering them uninformative:
🧵1/6
🧵1/6
github.com/JuliaPlots/U...
github.com/JuliaPlots/U...
info.arxiv.org/help/submit_...
info.arxiv.org/help/submit_...
📖: github.com/adrhill/juli...
📖: github.com/adrhill/juli...
arxiv.org/abs/2501.17737
🧵1/8
arxiv.org/abs/2501.17737
🧵1/8