Autoregressive Diffusion Models estimate musical surprisal more effectively than GIVT — capturing pitch expectations & segment boundaries 🎶
📜 arxiv.org/abs/2508.05306
#ListenerModels #Diffusion #ISMIR2025 @sonycsl-paris.bsky.social
Autoregressive Diffusion Models estimate musical surprisal more effectively than GIVT — capturing pitch expectations & segment boundaries 🎶
📜 arxiv.org/abs/2508.05306
#ListenerModels #Diffusion #ISMIR2025 @sonycsl-paris.bsky.social
We assess the organization of a hierarchical embedding space using different (combinations of) losses and improve on the SOTA.
📜 Paper: arxiv.org/pdf/2501.12796
#SonyCSLParis
We assess the organization of a hierarchical embedding space using different (combinations of) losses and improve on the SOTA.
📜 Paper: arxiv.org/pdf/2501.12796
#SonyCSLParis
🎬🎙️ Recording:
echo360.org.uk/media/f037dc...
🎶 More Info:
www.qmul.ac.uk/dmrn/dmrn19/
🎬🎙️ Recording:
echo360.org.uk/media/f037dc...
🎶 More Info:
www.qmul.ac.uk/dmrn/dmrn19/
Great work by Mathias Bjare and Giorgia Cantisani! 👏
We use an autoregressive transformer and Gaussian mixture models to estimate the information content in music2latent representations. 🧵👇
Great work by Mathias Bjare and Giorgia Cantisani! 👏
We use an autoregressive transformer and Gaussian mixture models to estimate the information content in music2latent representations. 🧵👇