#BentoML
This article explains how to compare Seldon, KServe, and BentoML frameworks for deploying machine learning models on Kubernetes It details setup examples and use cases for each framework ➤ https:// ku.bz/0SkgVw7Fz

Interest | Match | Feed
Origin
learnk8s.news
September 25, 2025 at 3:07 PM
This article explains how to compare Seldon, KServe, and BentoML frameworks for deploying machine learning models on Kubernetes It details setup examples and use cases for each framework ➤ https:// ku.bz/0SkgVw7Fz

Interest | Match | Feed
Origin
learnk8s.news
September 25, 2025 at 3:07 PM
This article explains how to compare Seldon, KServe, and BentoML frameworks for deploying machine learning models on Kubernetes

It details setup examples and use cases for each framework

https://ku.bz/0SkgVw7Fz
September 25, 2025 at 3:06 PM
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference
BentoML introduces llm-optimizer, an open-source tool for systematic LLM benchmarking, performance tuning, and reproducible comparisons
www.marktechpost.com
September 21, 2025 at 12:34 AM
BentoML udostępniło llm-optimizer, narzędzie open-source, które ma na celu optymalizację i benchmarking self-hosted dużych modeli językowych (LLM). Narzędzie to odpowiada na wyzwania związane z wdrażaniem LLM, umożliwiając znalezienie optymalnych konfiguracji pod kątem latencji, przepustowości i…
llm-optimizer: Open Source od BentoML Usprawnia optymalizację ingerencji dużych modeli językowych
BentoML udostępniło llm-optimizer, narzędzie open-source, które ma na celu optymalizację i benchmarking self-hosted dużych modeli językowych (LLM). Narzędzie to odpowiada na wyzwania związane z wdrażaniem LLM, umożliwiając znalezienie optymalnych konfiguracji pod kątem latencji, przepustowości i kosztów.
aisight.pl
September 15, 2025 at 1:23 PM
BentoML Launched Llm-optimizer: An Open-Supply AI Instrument For Benchmarking And Optimizing LLM Inference

BentoML has just lately launched llm-optimizer, an open-source framework designed to streamline the benchmarking and efficiency tuning of self-hosted giant language fashions (LLMs). The…
BentoML Launched Llm-optimizer: An Open-Supply AI Instrument For Benchmarking And Optimizing LLM Inference
BentoML has just lately launched llm-optimizer, an open-source framework designed to streamline the benchmarking and efficiency tuning of self-hosted giant language fashions (LLMs). The instrument addresses a standard problem in LLM deployment: discovering optimum configurations for latency, throughput, and price with out counting on handbook trial-and-error. Why is tuning the LLM efficiency troublesome? Tuning LLM inference is a balancing act throughout many transferring elements—batch dimension, framework alternative (vLLM, SGLang, and so forth.), tensor parallelism, sequence lengths, and the way nicely the {hardware} is utilized. Every of those components can shift efficiency in several methods, which makes discovering the appropriate mixture for pace, effectivity, and price removed from easy.
nextbusiness24.com
September 12, 2025 at 7:39 AM
BentoML Launched Llm-optimizer: An Open-Supply AI Instrument For Benchmarking And Optimizing LLM Inference

BentoML has just lately launched llm-optimizer, an open-source framework designed to streamline the benchmarking and efficiency tuning of self-hosted giant language fashions (LLMs). The…
BentoML Launched Llm-optimizer: An Open-Supply AI Instrument For Benchmarking And Optimizing LLM Inference
BentoML has just lately launched llm-optimizer, an open-source framework designed to streamline the benchmarking and efficiency tuning of self-hosted giant language fashions (LLMs). The instrument addresses a standard problem in LLM deployment: discovering optimum configurations for latency, throughput, and price with out counting on handbook trial-and-error. Why is tuning the LLM efficiency troublesome? Tuning LLM inference is a balancing act throughout many transferring elements—batch dimension, framework alternative (vLLM, SGLang, and so forth.), tensor parallelism, sequence lengths, and the way nicely the {hardware} is utilized. Every of those components can shift efficiency in several methods, which makes discovering the appropriate mixture for pace, effectivity, and price removed from easy.
nextbusiness24.com
September 12, 2025 at 7:39 AM
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference

BentoML has recently released llm-optimizer, an open-source framework designed to streamline the benchmarking and performance tuning of self-hosted large language models (LLMs). The tool addresses…
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference
BentoML has recently released llm-optimizer, an open-source framework designed to streamline the benchmarking and performance tuning of self-hosted large language models (LLMs). The tool addresses a common challenge in LLM deployment: finding optimal configurations for latency, throughput, and cost without relying on manual trial-and-error. Why is tuning the LLM performance difficult? Tuning LLM inference is a balancing act across many moving parts—batch size, framework choice (vLLM, SGLang, etc.), tensor parallelism, sequence lengths, and how well the hardware is utilized.
786hz.com
September 12, 2025 at 7:38 AM
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference

BentoML has recently released llm-optimizer, an open-source framework designed to streamline the benchmarking and performance tuning of self-hosted large language models (LLMs). The tool addresses…
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference
BentoML has recently released llm-optimizer, an open-source framework designed to streamline the benchmarking and performance tuning of self-hosted large language models (LLMs). The tool addresses a common challenge in LLM deployment: finding optimal configurations for latency, throughput, and cost without relying on manual trial-and-error. Why is tuning the LLM performance difficult? Tuning LLM inference is a balancing act across many moving parts—batch size, framework choice (vLLM, SGLang, etc.), tensor parallelism, sequence lengths, and how well the hardware is utilized.
nexttech-news.com
September 12, 2025 at 7:34 AM
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference

BentoML has recently released llm-optimizer, an open-source framework designed to streamline the benchmarking and performance tuning of self-hosted large language models (LLMs). The tool addresses…
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference
BentoML has recently released llm-optimizer, an open-source framework designed to streamline the benchmarking and performance tuning of self-hosted large language models (LLMs). The tool addresses a common challenge in LLM deployment: finding optimal configurations for latency, throughput, and cost without relying on manual trial-and-error. Why is tuning the LLM performance difficult? Tuning LLM inference is a balancing act across many moving parts—batch size, framework choice (vLLM, SGLang, etc.), tensor parallelism, sequence lengths, and how well the hardware is utilized.
nexttech-news.com
September 12, 2025 at 7:33 AM
BentoML Released llm-optimizer: An Open-Source AI Tool for Benchmarking and Optimizing LLM Inference BentoML has recently released llm-optimizer, an open-source framework designed to streamline the...

#AI #Shorts #Applications #Artificial #Intelligence […]

[Original post on marktechpost.com]
Original post on marktechpost.com
www.marktechpost.com
September 12, 2025 at 7:54 AM
READ HN 📖 news about AI, LLM and NLP: LLM-optimizer: Benchmark and optimize LLM inference across frameworks with ease https://github.com/bentoml/llm-optimizer #technews #NLP #genAI #notebookLM
September 12, 2025 at 5:50 AM
LLM-optimizer: Benchmark and optimize LLM inference across frameworks with ease Article URL: https://github.com/bentoml/llm-optimizer Comments URL: https://news.ycombinator.com/item?id=45217969 Points: 1 # Comments: 0

Interest | Match | Feed
Origin
github.com
September 12, 2025 at 2:24 AM
LLM-optimizer: Benchmark and optimize LLM inference across frameworks with ease Article URL: https://github.com/bentoml/llm-optimizer Comments URL: https://news.ycombinator.com/item?id=45217969 Poi...

Origin | Interest | Match
GitHub - bentoml/llm-optimizer: Benchmark and optimize LLM inference across frameworks with ease
Benchmark and optimize LLM inference across frameworks with ease - bentoml/llm-optimizer
github.com
September 12, 2025 at 2:24 AM
Discovered BentoML today. Sits somewhere between Ollama and Huggingface Transformers. I found this while figuring out how to run LLamaGuard4 and Shieldgemma2. BentoML manages models, a server, agentic workflows, and builds containers too

#ai #ml #bentoml #atdev

docs.bentoml.com/en/latest/in...
BentoML Documentation
github_stars pypi_status actions_status documentation_status join_slack BentoML is a Unified Inference Platform for deploying and scaling AI systems with any model, on any cloud. Featured examples:...
docs.bentoml.com
August 30, 2025 at 6:17 AM
This article explains how to compare Seldon, KServe, and BentoML frameworks for deploying machine learning models on Kubernetes It details setup examples and use cases for each framework ➜ https:// ku.bz/0SkgVw7Fz

Interest | Match | Feed
Origin
learnk8s.news
August 25, 2025 at 3:07 PM
This article explains how to compare Seldon, KServe, and BentoML frameworks for deploying machine learning models on Kubernetes It details setup examples and use cases for each framework ➜ https:// ku.bz/0SkgVw7Fz

Interest | Match | Feed
Origin
learnk8s.news
August 25, 2025 at 3:07 PM
This article explains how to compare Seldon, KServe, and BentoML frameworks for deploying machine learning models on Kubernetes

It details setup examples and use cases for each framework

https://ku.bz/0SkgVw7Fz
August 25, 2025 at 3:06 PM
🚀 Phase 5: Deployment Pipeline
Creating the deployment pipeline! The optimized model is now in production, and I’m using BentoML to serve the model as an API. Time to make it scalable in Docker 🐳. #MLOpsZoomcamp #DataTalksClub
August 4, 2025 at 10:31 PM
「BentoML」に深刻な脆弱性 ─ ファイルアップロード処理に起因

機械学習モデルのデプロイに利用されるフレームワーク「BentoML」に脆弱性が明らかとなった。アップデートで修正されている。

「JSON」や「multipart/form-data」におけるファイルアップロード機能の処理にサーバサイドリクエストフォージェリ(SSRF)の脆弱性「CVE-2025-54381」が明らかとなったもの。

ファイルのアップロードを処理するほとんどの「MLサービス」に影響を与える脆弱性だという。
【セキュリティ ニュース】「BentoML」に深刻な脆弱性 ─ ファイルアップロード処理に起因(1ページ目 / 全2ページ):Security NEXT
機械学習モデルのデプロイに利用されるフレームワーク「BentoML」に脆弱性が明らかとなった。アップデートで修正されている。 :Security NEXT
www.security-next.com
July 31, 2025 at 8:48 PM
🔒 Patch: Upgrade to BentoML version 1.4.19
🛡️ Implement strict validation for all user-provided URLs, especially in file upload functionalities.
📛 Internal exposure is dangerous; attackers can compromise all hosted code and or services! (🧵 3/3)
July 30, 2025 at 3:53 PM
#CVE-2025-54381#BentoML versions 1.4.0 to 1.4.18 are vulnerable to an unauthenticated Server-Side Request Forgery (#SSRF) due to improper validation of user-provided URLs in file upload handlers. CVSSv3 base 9.9, EPSS prediction 6.02% buff.ly/0zoOTvB (🧵 1/3)
July 30, 2025 at 3:53 PM
📌 58 vulnerabilities reported, 8 critical. BentoML, langchain-ai, and Tesla Wall Connector among affected. #CyberSecurity #Vulnerabilities https://tinyurl.com/24kfom5d
58 new CVEs published on 2025-07-30 (CVSS: 7.0 - 9.9)
58 new CVEs published on 2025-07-30 (CVSS: 7.0 - 9.9)
tinyurl.com
July 30, 2025 at 2:42 PM
CVE-2025-54381 - BentoML SSRF Vulnerability
CVE ID : CVE-2025-54381

Published : July 29, 2025, 11:15 p.m. | 3 hours, 44 minutes ago

Description : BentoML is a Python library for building online serving systems optimized for AI apps and model inference. In versions 1.4.0 ...
CVE-2025-54381 - BentoML SSRF Vulnerability
BentoML is a Python library for building online serving systems optimized for AI apps and model inference. In versions 1.4.0 until 1.4.19, the file upload processing system contains an SSRF vulnerability that allows unauthenticated remote attackers to force the server to make arbitrary HTTP requests. The vulnerability stems from the …
cvefeed.io
July 30, 2025 at 3:27 AM