Kit Gallagher
@kitcgallagher.bsky.social
81 followers 100 following 4 posts
PhD student; Oxford University & Moffitt Cancer Center; Mathematical Oncology (treatment scheduling and evolutionary models) and Epidemiology (inference and agent-based modeling). Lecturer in Applied Maths at St Hilda's College, Oxford.
Posts Media Videos Starter Packs
kitcgallagher.bsky.social
As featured in the #mathonco newsletter, this inspired an artwork exploring the trade-off between appointment frequency and time to progression (background color). The optimal strategy line separates stable and chaotic outcomes, and we tile this pattern with the highest TTP at each tile's center
When implementing Adaptive Therapy (AT) treatment schedules clinically, patients are monitored (and treatment schedules updated) at discrete time intervals. This leads to a trade-off; more frequent clinical appointments allow greater control of the tumor at a higher average size (leading to longer time to progression, or TTP), but are more costly and logistically challenging to implement. We can derive the optimal threshold size for treatment to be used in an AT protocol, and plot this in white over different time intervals between appointments. This is superimposed over the TTP for all different treatment protocols (given by the coloured background) - super-critical protocols on one side of the optimal line leads to chaotic outcomes while sub-optimal protocols achieve a lower TTP. This pattern is tiled and inverted to create a 'chess board', with the highest TTP at the center of each tile, reflecting the optimal game that clinicians are trying to play against the cancer tumor.
kitcgallagher.bsky.social
Chasing Perfection - previous work to optimize adaptive therapy schedules for cancer rely on monitoring the patient continuously. We find that accounting for discrete clinical appointments across multiple tumor models motivates patient-specific personalization in optimal tx!

doi.org/10.1101/2025...
Deriving Optimal Treatment Timing for Adaptive Therapy: Matching the Model to the Tumor Dynamics
Adaptive therapy (AT) protocols have been introduced to combat drug-resistance in cancer, and are characterized by breaks in maximum tolerated dose treatment (the current standard of care in most clin...
doi.org
kitcgallagher.bsky.social
Great news for the promotion and dissemination of open science, and hopefully institutions that benefit from this service will also be able to support this long-term initiative financially!
richardsever.bsky.social
Big news: we are setting up a new non-profit organization to run bioRxiv and medRxiv. It's called openRxiv [no it's not a new preprint server; it's dedicated organization to oversee the servers] openrxiv.org 1/n
Homepage - openRxiv
openRxiv is an independent non-profit, the new organizational home for bioRxiv and medRxiv, enabling researchers to instantly share groundbreaking findings with the global scientific community.
openrxiv.org
kitcgallagher.bsky.social
#HiSciSky! I'm in the final year of my PhD applying math modeling and deep learning to improve treatment scheduling in late-stage cancers. I'm starting to look for #postdocs in #mathonco and cancer #evolution if you know anyone who's hiring!
Reposted by Kit Gallagher
joshuabull.bsky.social
Sounds like what we need is something that makes it easier to generate quantitative, interpretable metrics that describe observable biological differences in tissue, without being a black box and requiring unreasonable amounts of training data...

www.muspan.co.uk

doi.org/10.1101/2024...