Brodie Bulcock
@brodiebulcock.bsky.social
17 followers
47 following
2 posts
PhD candidate at UWA researching fungal natural products chemistry ⚗️🧪 and biosynthesis 🧫🧬
Posts
Media
Videos
Starter Packs
Reposted by Brodie Bulcock
FACCTs
@faccts.de
· Feb 19
GOAT: A Global Optimization Algorithm for Molecules and Atomic Clusters
In this work, we propose a new Global Optimization Algorithm (GOAT) for molecules and clusters of atoms and show how it can find the global energy minima for both systems without resorting to molecul...
doi.org
Brodie Bulcock
@brodiebulcock.bsky.social
· Feb 10
SpectroIBIS: Automated Data Processing for Multiconformer Quantum Chemical Spectroscopic Calculations
Quantum chemical spectroscopic calculations have grown increasingly popular in natural products research for aiding the elucidation of chemical structures, especially their stereochemical configurations. These calculations have become faster with modern computational speeds, but subsequent data handling, inspection, and presentation remain key bottlenecks for many researchers. In this article, we introduce the SpectroIBIS computer program as a user-friendly tool to automate tedious tasks commonly encountered in this workflow. Through a simple graphical user interface, researchers can drag and drop Gaussian or ORCA output files to produce Boltzmann-averaged ECD, VCD, UV–vis and IR data, optical rotations, and/or 1H and 13C NMR chemical shifts in seconds. Also produced are formatted, publication-quality supplementary data tables containing conformer energies and atomic coordinates, saved to a DOCX file compatible with Microsoft Word and LibreOffice. Importantly, SpectroIBIS can assist researchers in finding common calculation issues by automatically checking for redundant conformers and imaginary frequencies. Additional useful features include recognition of conformer energy recalculations at a higher theory level, and automated generation of input files for quantum chemistry programs with optional exclusion of high-energy conformers. Lastly, we demonstrate the applicability of SpectroIBIS with spectroscopic calculations for five natural products. SpectroIBIS is open-source software available as a free desktop application (https://github.com/bbulcock/SpectroIBIS).
doi.org