Marko Bachl
@bachl.bsky.social
2.1K followers 2.1K following 270 posts
communication research at @ifpuk-berlin.bsky.social @freieuniversitaet.bsky.social
Posts Media Videos Starter Packs
Reposted by Marko Bachl
rki.de
Die Aufklärung von Falschinformationen & Impfmythen ist ein wichtiges Anliegen, daher klären wir regelmäßig auf.
Fakt heute:
Autismus entsteht durch Veränderungen in der früh­kindlichen Gehirn­entwicklung.
Als Haupt­ursache gelten genetische Faktoren.

🔗 www.rki.de/impfmythen
„Fakt“:
„Autismus (Autismus-Spektrum-Störung) entsteht durch Veränderungen in der frühkindlichen Gehirnentwicklung. Als Hauptursache gelten genetische Faktoren.“

"Mythos“:
„Die Impfung gegen Masern-Mumps-Röteln kann Autismus auslösen.“

 „Erklärung“ mit Illustration einer Impfampulle:
„Erste Auffälligkeiten, die auf Autismus hinweisen, zeigen sich meist bereits vor dem dritten Lebensjahr – also genau in der Zeit, in der Kinder viele Impfungen, unter anderem auch gegen Masern-Mumps-Röteln, erhalten. Die Diagnose Autismus belastet Eltern und Familien erheblich. Eltern betroffener Kinder möchten verständlicherweise verstehen, warum das eigene Kind eine autistische Störung entwickelt hat und stoßen bei der Suche nach Ursachen auf eine scheinbar plausible Erklärung: Die zuvor erfolgte Impfung habe die Erkrankung ausgelöst. Das ist jedoch ein Trugschluss.
Befeuert wurde der Mythos in den 90er-Jahren, als ein Arzt behauptete, Kombinationsimpfstoffe gegen Masern, Mumps und Röteln könnten den Darm schädigen und so zu Autismus führen. Später wurde aufgedeckt, dass Daten seiner Studie gefälscht waren und er mit der Verbreitung der Falschinformation eigene finanzielle Interessen verfolgte. Ihm wurde wegen unethischem Verhalten die ärztliche Zulassung entzogen. Mitautor:innen sowie das Fachmagazin, das seine Studie veröffentlicht hatte, distanzierten sich öffentlich von seinen Aussagen und die Veröffentlichung wurde zurückgezogen.
In vielen großangelegten internationalen Studien wurde untersucht, ob es einen Zusammenhang zwischen Impfungen und dem Auftreten von Autismus-Spektrum-Störungen geben könnte. Das Ergebnis: Autismus tritt bei geimpften und ungeimpften Kindern gleich häufig auf. Es gibt außerdem Hinweise darauf, dass Veränderungen im Gehirn bei Autismus bereits im Mutterleib und im ersten Lebensjahr vorliegen – also bevor die Impfung gegen Masern-Mumps-Röteln verabreicht wird.“
bachl.bsky.social
Warning: I have been told by German students that they associate the English term "back door" not with any doors but use it almost exclusively in a very different context that I really don't want to talk about in a Methods lecture...
Reposted by Marko Bachl
cais-research.bsky.social
🎉 As of today, September 1, 2025, Prof. Dr. Johannes Breuer heads the "Research Data & Methods" team at CAIS. Together with the University of Duisburg-Essen, he has been appointed Professor of Digital Social Sciences. 🎉
🔗 www.cais-research.de/en/news/joha...
@johannesbreuer.com @unidue.bsky.social
Portrait of Johannes Breuer + Text "Prof. Dr. Johannes Breuer, 
New Professor & Head of the Team Research Data & Methods at CAIS"
Reposted by Marko Bachl
cais-research.bsky.social
🎉 Prof. Johannes Breuer übernimmt ab 1.9.2025 die Leitung des Teams „Research Data & Methods“. Gemeinsam mit der Universität Duisburg-Essen wurde er zum Professor für Digitale Sozialwissenschaften berufen. 🎉
🔗 www.cais-research.de/news/Johanne...
@johannesbreuer.com breuer.com @unidue.bsky.social
Portrait von Johannes Breuer + Text "Prof. Dr. Johannes Breuer, 
Neuer Professor und Leiter des Teams 
„Research Data & Methods“ am CAIS"
Reposted by Marko Bachl
bredowinstitut.bsky.social
📣Open access erschienen: #M&K Heft 3/2025 zu "Diversität, Intersektionalität und Geschlecht im Journalismus" 🗺️🌈📖, herausgegeben von @mluenenborg.bsky.social, @ananzinga.bsky.social, @yenerbayramoglu.bsky.social und @bernadetteuth.bsky.social 👉 www.nomos-elibrary.de/de/10.5771/1...
bachl.bsky.social
Very nice location for our 4th DiMES workshop today with @audreyalejandro.bsky.social. Thanks to @jojukao.bsky.social for organizing and @dennmis.bsky.social for setting us up in Villa Engler @freieuniversitaet.bsky.social

www.polsoz.fu-berlin.de/en/soziologi...
Pic of villa engler
bachl.bsky.social
freieuniversitaet.bsky.social
Etwa 3000 Personen protestieren gerade vor den Senatsverwaltung für Wissenschaft gegen die Sparmaßnahmen des Landes Berlin. Toll, dass wir so viele sind! 👏

Motto: Hochschulen sind #unkürzbar 💪

ℹ️ www.fu-berlin.de/sites/hausha...
Protestierende mit Schildern
Reposted by Marko Bachl
weizenbauminstitut.bsky.social
🤖 In einer Zeit, in der KI-basierte Systeme und Plattformen tief in unser tägliches Leben eingreifen – von Informationsverbreitung bis hin zur #Meinungsbildung –, stellt sich die dringende Frage:
bachl.bsky.social
So all students in the control group would get a 0 on the “minutes listened to the podcast” measure? And then Assignment -> Minutes listened -> learning outcome?
Or should the use a general measure like “time spent on course materials” instead?
bachl.bsky.social
Yes, I can genuinely understand the general intuition why one wants to omit non-compliers from the treatment group, because how would the treatment work if they did not take it?

But not to see the obvious selection bias in favor of the interested students and having a very clear COI, idk...
Reposted by Marko Bachl
bachl.bsky.social
I did not see the "declaration of competing interest" before. Now this seems to be problematic when you decide to use a data cleaning procedure that would likely bias your results in a predictable way, even if it is preregistered...
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: The audio-learning materials used in this study were developed by the authors in collaboration with Anywyse B.V. The senior author is partly employed by Anywyse B.V (1 day/week). However, employment played no role in the validity of the results. The study was pre-registered and code has been made publicly available. Data is available upon request.
Reposted by Marko Bachl
bachl.bsky.social
This paper seems relevant, claiming (per title) "AI-assisted audio-learning improves academic achievement through motivation and reading engagement" (doi.org/10.1016/j.ca...). Yet, excluding half of the treatment for not listening to the podcast seems like a problem, no?
Screenshot from the paper:
"4.4. Data analysis plan
As pre-registered, we excluded participants in the audio-learning group who listened to less than 76.8 min (20%) of the total 384 min of audio materials. " 5.1. Data preprocessing
From the 257 participants in the audio-learning condition, 137 participants were excluded from the analyses as they listened to less than 20% of the audio-learning materials. All analyses were performed on the remaining 273 participants.
bachl.bsky.social
And the hype is sure to follow on the hype network
Great experiment on AI podcasts and learning by Nanda Jafarian & Anne-Wil Kramer. 

AI-generated podcasts led to better student achievement by enhancing motivation and engagement. They were especially helpful for students with diverse learning needs.

The authors generated podcast scripts from the textbook based on ChatGPT and then used Anywyse to generate podcasts.

What was key, in my opinion, was the pedagogy behind AI. The scripts used effective pedagogical approaches :
- Activate what students already know
- Give a simple overview of key points
- Use relatable examples
- Add questions to check understanding

Great use of AI, grounded in solid pedagogy...

Link in the first comment.
bachl.bsky.social
I did not see the "declaration of competing interest" before. Now this seems to be problematic when you decide to use a data cleaning procedure that would likely bias your results in a predictable way, even if it is preregistered...
The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: The audio-learning materials used in this study were developed by the authors in collaboration with Anywyse B.V. The senior author is partly employed by Anywyse B.V (1 day/week). However, employment played no role in the validity of the results. The study was pre-registered and code has been made publicly available. Data is available upon request.
bachl.bsky.social
I get the logic of the limitations statement ---how can someone be affected if they don't comply with the treatment---, but this seems like a typical example of how "Conditioning on Posttreatment Variables Can Ruin Your Experiment" (doi.org/10.1111/ajps...)
Finally, as pre-registered, participants in the experimental group who listened to less than 20% of the audio-learning materials were excluded from the analysis. This decision was made to evaluate the audio-learning modules’ efficacy among those who actively engaged, as including non-engaged participants would conflate the effects of the intervention with a lack of exposure. Additionally, including non-engaged participants would create an unfair comparison with the control group, as their lack of engagement would align them more closely with controls than active users. However, it is worth noting that individuals may have different learning preferences, and audio-based learning is not effective or appealing for everyone. The exclusion of approximately half of the participants in the experimental group suggests that the audio-learning modules may not have been sufficiently engaging for all students. Future studies should explore strategies to improve engagement, while also considering individual learning preferences and identifying the factors that influence why some students choose to engage and others do not.
bachl.bsky.social
This paper seems relevant, claiming (per title) "AI-assisted audio-learning improves academic achievement through motivation and reading engagement" (doi.org/10.1016/j.ca...). Yet, excluding half of the treatment for not listening to the podcast seems like a problem, no?
Screenshot from the paper:
"4.4. Data analysis plan
As pre-registered, we excluded participants in the audio-learning group who listened to less than 76.8 min (20%) of the total 384 min of audio materials. " 5.1. Data preprocessing
From the 257 participants in the audio-learning condition, 137 participants were excluded from the analyses as they listened to less than 20% of the audio-learning materials. All analyses were performed on the remaining 273 participants.
bachl.bsky.social
🙈
zachweinersmith.bsky.social
Holy shit, I hadn't even thought of this!

asia.nikkei.com/Business/Tec...

You hide AI prompts in your paper that tell AI reviewers to say positive stuff (presumably both for public reviews and private analysis)

I wonder if Amazon sellers are already doing this?
'Positive review only': Researchers hide AI prompts in papers
Instructions in preprints from 14 universities highlight controversy on AI in peer review
asia.nikkei.com
bachl.bsky.social
Short recommendation: Don't do it.

Longer: Don't do it unless the theory is not only plausible but supported by causal evidence from other studies. "Plausible" is too low a bar.
Reposted by Marko Bachl
scmeditor.bsky.social
How willing are scientists to act as experts in the news media? In the context of the #COVID-19pandemic, @birteleonhardt.bsky.social, Daniel Nölleke & Folker Hanusch interviewed 24 Austrian #ScientificExperts about their perception of news media logics. www.doi.org/10.5771/2192...
Reposted by Marko Bachl
cbpuschmann.bsky.social
Why do people search for individual politicians? Because they (don't) like them. In a new paper we find sympathy/antipathy to be important predictors of political information seeking. We also find searches for female politicians more often concerned with appearance & family. doi.org/10.1177/1461...